ANALYSIS OF BHP DATA AND PRODUCTION IN TBR RESERVOIRS

Timothy J. Brock, PE Brock Engineering, LLC
Timothy L. Baker, West Bay Exploration Co.
AAPG ESM September 25, 2012
Block Diagram Showing Reservoir Complexity

- Bounding Fault (Heavy Lines)
- Primary Fractures (Solid Lines)
- Secondary Fractures (Dashed Lines)

Shown in Pink:
- Dolomitization of Matrix and Pore Size Enhancement in Grainstone and Packstone Facies Near Faults and Fractures

No Scale
Fluid Flow Periods

Fracture Dominated Flow

Matrix Transient Linear Flow

Matrix Pseudosteady-State Flow
Matrix-Dominated Flow, Hyperbolic Decline

Transition from Fractures to Matrix

Excess Deliverability, Fracture Dominated
Typical BHP Buildup Curve

\[\frac{T\Delta t}{\Delta t} \]
BHP Buildup Interpretation Technique

Formula:

\[
S = 1.151 \left\{ \frac{P_{1hr} - P_i}{m - \log\left(\frac{k}{(\Phi \mu c_t r_w)^2} \right)} + 3.2275 \right\}
\]

Units:

- \(k \): \(162.6 \times q \times B \times \mu \) in \(m^2 h \)

Variables:

- \(\omega = 10^{\delta p / m} \)
- \(\omega = t_1 / t_2 \)
- \(\omega = \frac{\Phi_2 c_2}{(\Phi_1 c_1 - \Phi_2 c_2)} \)

Rearranging and assuming:

\(\Phi_2 = \omega \Phi_1 / (1 + \omega) \)

Kamal, SPE Monograph 23, ©2009, pg. 233, Reproduced with permission of SPE. Further reproduction prohibited without permission.
k = 75.6 md
S = -4.39
ω = 0.20
Φ2 = 1.3%
Predicted correlation

\[y = -3.289 \ln(x) + 1693.7 \]

\[R^2 = 0.9986 \]

\[P^* = 1,693.7 \text{ psi} \]

\[m = 2.303 \times 3.289 = 7.575 \text{ psi/cycle} \]

\[\delta P = 0.8 \text{ psi} \]

\[P_{1hr} = -3.289 \ln(395.89) + 1693.7 = 1674.0 \text{ psig} \]

Data:

- \(k = 31.4 \text{ md} \)
- \(S = -4.24 \)
- \(\omega = 0.79 \)
- \(\Phi_2 = 2.6\% \)
Effect of ω on the Shape of the Buildup Curve

AAPG ESM September 25, 2012 - Brock/Baker
Comparison of 4 Napoleon Field Analyses

<table>
<thead>
<tr>
<th>Well #</th>
<th>K, md</th>
<th>S</th>
<th>ω</th>
<th>Φ₁, %</th>
<th>Φ₂, %</th>
<th>% in Fractures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75.6</td>
<td>-4.39</td>
<td>0.20</td>
<td>7.7</td>
<td>1.3</td>
<td>14.4</td>
</tr>
<tr>
<td>2</td>
<td>31.4</td>
<td>-4.24</td>
<td>0.79</td>
<td>6</td>
<td>2.6</td>
<td>30.2</td>
</tr>
<tr>
<td>3</td>
<td>34.9</td>
<td>-5.5</td>
<td>0.26</td>
<td>5.3</td>
<td>1.1</td>
<td>17.2</td>
</tr>
<tr>
<td>4</td>
<td>20.1</td>
<td>-4.58</td>
<td>0.31</td>
<td>6.9</td>
<td>1.6</td>
<td>18.9</td>
</tr>
</tbody>
</table>

AAPG ESM September 25, 2012 - Brock/Baker
What Happens When a Well Crosses Two Reservoir Compartments?

First Well on Production

Lateral Drainhole Drilled After Initial Well Was Placed On-Line

Fracture Set B

Fracture Set A

AAPG ESM September 25, 2012 - Brock/Baker
Heterogeneity Due to Penetrating Multiple Reservoirs

Napoleon Field
(Partial)

AAPG ESM September 25, 2012 - Brock/Baker
Conclusions

- Trenton Black River reservoirs can be very complex, requiring considerable study for proper evaluation.
- Combination of reservoir porosity types can materially effect the evaluation.
- Hydrocarbons stored in fractures represent about 20% of the total hydrocarbons initially in place.
- Compartmentalization also affects the pressure behavior of the wells.
Acknowledgements

- West Bay Exploration and its Partners – for the data and permission to publish
- AAPG ESM - for providing the opportunity to share this information
- SPE for technical background and permission to publish excerpts from prior publications.